
HOMEWORK 3

Due date: Tuesday of Week 4

Exercises: 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.9, 2.10, 3.1, 3.2, 3.4, 3.6, pages 379-380 of Artin’s book.

Hint for Exercise 2.10: See Ex.2.2 and 3.10, pages 354-355. Exercise 3.4 is probably not so easy.
You can use the fact that C[x, y, z, w] is a UFD and thus one can define gcd there. These facts are
proved in the following problems. See this link for a proof of Exercise 3.4.

Problem 1. Let R be an integral domain and let p ∈ R be a prime element. Show that p is
irreducible.

(Recall that: p is prime means that p is not a unit and if p|ab, then p|a or p|b; p is irreducible
means that p is not a unit and it cannot be factorized further, namely, if p = ab for a, b ∈ R, then
one of a, b is a unit.)

Let R be an integral domain and let F be its fractional field. An element α ∈ F is called integral
over R if there exists a monic polynomial f ∈ R[x] such that f(α) = 0. The ring R is called
integrally closed if for any α ∈ F integral over R, we have α ∈ R.

Problem 2. (1) Show that Z is integrally closed.
(2) Let R = Z[

√
−3] =

{
a+ b

√
−3 : a, b ∈ Z

}
. Its fractional field is

F = Q(
√
−3) =

{
a+ b

√
−3 : a, b ∈ Q

}
.

Show that ω := −1+
√
−3

2 ∈ F is integral over R but not in R. Thus R is not integrally closed.

Problem 3. (1) Let R be a UFD, show that R is integrally closed. Conclude that the ring
Z[
√
−3] is not a UFD. Find an irreducible element in Z[

√
−3] such that it is not prime.

(2) Let ω := −1+
√
−3

2 . Show that the ring R = Z[ω] = {a+ bω : a, b ∈ Z} is a Euclidean domain
and thus it is a UFD.

Hint for part (2): The proof is similar to the case that Z[i] is a Euclidean domain.

Let R be a ring. Given two elements a, b ∈ R. An element d ∈ R is called a greatest common
divisor (gcd) of a and b if it satisfies the following two conditions:

(1) d|a, d|b;
(2) if x ∈ R is an element such that x|a, x|b, then x|d.

If such a d exists, and u ∈ R×, then ud also satisfies the above conditions. Conversely, if d, d′ both
satisfy the above gcd conditions, then there exists a unit u ∈ R× such that d′ = ud. To avoid such
ambiguity, we use gcd(a, b) to denote the principal ideal (d) if d satisfies the above condition and
call this principal ideal the greatest common divisor of a and b.

Note that gcd(a, b) in general is not the ideal (a, b) (which always means the ideal generated by a
and b, namely (a, b) = {ax+ by : x, y ∈ R}). For example, in the ring C[x, y], we have gcd(x, y) = 1,
but (x, y) ̸= (1). Actually, C[x, y]/(x, y) ∼= C.

An integral domain R is called a GCD domain if for any a, b ∈ R, gcd(a, b) exists.

Problem 4. Let R be a GCD domain.

(1) Suppose gcd(x, y) exists. Show that (x, y) ⊂ gcd(x, y). In particular, if (x, y) = 1, then
gcd(x, y) = 1. Note that the converse is not true by the above example.

(2) Let a1, . . . , an ∈ R. Show that there exists an element d ∈ R such that (a) d|ai,∀i, and (b)
if x ∈ R such that x|ai,∀i, then x|d. This d is called the gcd of a1, . . . , an and we denote it
(or the principal generated by it) by gcd(a1, . . . , an).
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(3) Show that gcd(gcd(a, b), c) = gcd(a, gcd(b, c)),∀a, b, c ∈ R.
(4) Suppose that gcd(a, b) = 1 for a, b ∈ R. Show that gcd(an, b) = 1 for any n ≥ 1.
(5) Show that gcd(ax, ay) = a · gcd(x, y)

In class, we showed that a PID is a GCD domain.

Problem 5. (1) Show that a UFD is a GCD domain.
(2) Show that a GCD domain is integrally closed.

Hint for (1): this gcd is what you learned from elementary school. (2), this proof is similar to
Problem 3. You might have to use gcd(an, b) = gcd(a, b) for a, b ∈ R, a GCD domain.

Thus we have the inclusions

ED ⊂ PID ⊂ UFD ⊂ GCD domain ⊂ integrally closed domain.

In the following several problems, we will show that if R is a UFD, then R[x] is also a UFD. The
proof is basically parallel to the case Z[x] as we did in class. Let R be a UFD. Given a polynomial
f = a0 + a1x + · · · + anx

n ∈ R[x], define c(f) := gcd(a0, a1, . . . , an). Note that c(f) is only well-
defined up to associates. A polynomial f ∈ R[x] is called primitive if c(f) ∼ 1 (namely, the
principal ideal (c(f)) is R or c(f) is an associate of 1). Let F be the fractional field of R.

Problem 6. Let R be a UFD. f, g ∈ R[x]. Show that fg is primitive iff f and g are both primitive.

See Proposition 12.3.4 (b) for the case when R = Z.

Problem 7. Recall that R is a UFD and F is its fractional field.

(1) Show that every polynomial f ∈ F [x] can be written as f = cf0 with c ∈ F and f0 ∈ R[x]
is primitive. Moreover, if cf0 = c′f ′

0 with c, c′ ∈ F, f0, f
′
0 ∈ R[x] primitive, show that there

exists a unit u ∈ R× such that c′ = cu, f ′
0 = u−1f0.

(2) Show that c ∈ R iff f ∈ R[x]. Moreover, f ∈ R[x], then c ∼ c(f).
(3) Suppose f, g ∈ R[x] are two primitive polynomials. If f = αg for some α ∈ F×, show that

α ∈ R×.

This is Lemma 12.3.5 when R = Z.

Problem 8. Let R still be a UFD and F be its fractional field.

(1) Let f ∈ R[x] with deg(f) > 0. If f is irreducible in R[x], show that f is irreducible in F [x].
(2) Show that f ∈ R[x] is irreducible iff f is a prime element in R or a primitive polynomial

that is irreducible in F [x].
(3) Show that every irreducible element in R[x] is a prime element.

This is Proposition 12.3.7 when R = Z.

Problem 9. Let R be a UFD. Show that R[x] is a UFD.

This is Theorem 12.3.10.


